
Design Templates – Part One
This chapter will demonstrate how the content of the website can be embedded
in a design template.

The design of a site is also known as the "theme" or "skin". I will use these words
interchangeably. They both refer to the same thing.

A theme is composed of one or more page templates. The page template is used to
deine a layout of a speciic page (for example, a "splash page" vs. a content page),
while the theme says overall what the website looks like—colors, images, and so on.
Designers call this the "look and feel" of the website.

In this chapter, we will discuss:

•	 How themes and templates work

•	 Smarty templating engine

•	 Creation of a theme

•	 Front-end navigation

We will continue with these topics into the next chapter, which will improve on the
navigation using jQuery, and then we'll build a theme management system.

How do themes and templates work?
A "theme" is a term which describes the overall look and feel of a website. It
describes what the various elements look like—headers, links, tables, lists, and so
on. It deines the colors that are used, and any common background images such as
gradients or logos. The theme contains one or more templates, and any images or
other resources that will be required by those templates.

www.eBookTM.Com

Design Templates – Part One

[116]

A "template" is basically an HTML snippet which deines the layout of a page—where
on the page the menu is located, are there panels, is there a header and footer. It uses
the theme's design, so that other templates in the same site have a similar feel to them.

In the CMS we are building, a template uses a few codes to deine where the various
elements go on a page.

As an example, here is a very simple template, using code designed to work with the
Smarty templating engine:

<!doctype html>

<html>

 <head>

 {{$METADATA}}

 </head>

 <body>

 {{MENU direction="horizontal"}}

 {{$PAGECONTENT}}

 </body>

</html>

The three highlighted lines are template codes which show where the CMS should
place various HTML snippets that it generates.

PHP is itself described as a templating engine, as you can mix it in with HTML
simply enough (and in fact, that's how it was originally designed).

You might ask, why bother using an external engine such as Smarty at all when PHP
is one itself?

Here is the above template written as PHP:

<!doctype html>

<html>

 <head>

 <?php

 require 'common.php';

 echo $METADATA;

 ?>

 </head>

 <body>

 <?php

 MENU (array('direction'=>'horizontal'));

 echo $PAGECONTENT;

 ?>

 </body>

</html>

www.eBookTM.Com

Chapter 5

[117]

The difference here is not huge, but the irst example is easier for a non-PHP user (such
as a designer) to use, whereas the second one requires a bit of knowledge of PHP.

Also, notice in the second one, the require line is used to set up the variables
$METADATA and $PAGECONTENT. A non-PHP programmer might be confused if they
forgot to include that and there were empty spaces in the resulting HTML.

Another very important reason is that PHP iles tend to be tied to speciic URLs, such
as http://cms/page1.php. If you have a number of different pages, and the designer
wants to adjust the design, the designer needs to change all of those existing pages.

If the template is kept in an external page and interpreted through an engine, you get
a number of advantages:

•	 Designers don't and can't write PHP in the template iles. This makes the
engine more robust, allowing the designers to do what they want without
risking breakage.

•	 Programmers don't mess with template iles. This means that there is no
overlap between what the programmers and designers are doing, making
the end product more stable than if they were constantly tweaking each
others' code.

•	 Because the templates are external, you can swap designs by moving the
theme directories around.

I think the most important aspect of this is the separation of concerns. The programmer
(you) handles programming, the designer handles design, and the only time the work
collides is when the design is being interpreted by the templating engine.

Writing your own templating engine is not hard. For a few years, I used my own,
which was based on code similar to the previous examples.

One problem with home-grown templating engines is that they do not always have
the robustness and speed of the more established engines.

Smarty speeds up its parsing by compiling the template into a PHP script, and then
caching that script in a directory set aside for that purpose.

If you use an accelerator such as APC, ionCube, Zend, and so on, then that compiled
script will then be cached in-memory by the accelerator, speeding it up even further.

There are other templating engines out there—Twig, FastTemplate, PHAML, and
others. They all do basically the same thing, so which you use is perhaps a personal
choice. For me, Smarty works and I've no reason to choose another. It's simple to use,
and fast.

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Design Templates – Part One

[118]

File layout of a theme
We've discussed how a templating engine works. Now let's look at a more concrete
example.

1. Create a directory /ww.skins in the CMS webroot.

2. Within that directory, each theme has its own directory. We will create a very
simple theme called "basic".

3. Create a directory /ww.skins/basic, and in that, create the following
directories:

/ww.skins/basic/h This will hold the HTML template iles.
/ww.skins/basic/c This will hold any CSS iles.
/ww.skins/basic/i This will hold images.

Usually, that will be enough for any theme. The only necessary directory there is /h.
The others are simply to keep things neat.

If I wanted to add JavaScript speciic to that theme, then I would add it to a /
ww.skins/basic/j directory. You can see how it all works.

In this basic theme, we will have two templates. One with a menu across the top
(horizontal), and one with a menu on the left-hand side (vertical). We will then
assign these templates to different pages in the admin area.

In the admin area, the templates will be displayed in alphabetical order.

If there is one template that you prefer to be the default one used by new pages, then
the template should be named _default.html. After sorting alphabetically, the
underscore causes this ile to be top of the list, versus other ilenames which begin
with letters.

.html is used as the extension for the template so that the designer can easily view
the ile in a browser to check that it looks okay.

Let's create a default template then, with a menu on the left-hand side. Create this
ile as /ww.skins/basic/h/_default.html:

<!doctype html>

<html>

 <head>

 {{$METADATA} }

 <link rel="stylesheet"

 href="/ww.skins/basic/c/style.css"/>

 </head>

www.eBookTM.Com

Chapter 5

[119]

 <body>

 <div id="menu-wrapper">{{MENU

 direction="horizontal"}}</div>

 <div id="page-wrapper">{{$PAGECONTENT}}</div>

 </body>

</html>

The reason that {{ is used instead of {, is that it if the designer used the brace
character ({) for anything in the HTML, or the admin used it in the page content,
then it would very likely cause the templating engine to crash—it would become
confused because it could not tell whether you meant to just display the character,
or use it as part of a code.

By doubling the braces {{ ... }}, we reduce the chance of this happening immensely.
Doubled braces very rarely (I've never seen it at all) come up in normal page text.

The reason we use braces at all, and not something more obviously programmatic
such as "<!--{ ... }-->", is that it is readable. It is easier to read "insert
{{$pagename}} here" than to read "insert <!--{$pagename}--> here".

I've introduced two variables and a function in the template:

{{$METADATA}} This variable is an automatically generated string consisting of
<head> child elements such as <title> and <script> tags
to load jQuery, and so on.

{{$PAGECONTENT}} This variable is the page body text.

{{MENU}} This is a function which builds up a menu. It can have a
number of options attached. You've seen "direction" in the
template example code. We'll discuss this later in the chapter.

The template includes a hardcoded reference to the stylesheet.

We could insist that the stylesheet always be named /ww.skins/themename/c/
styles.css, and that would allow us to include it automatically in the
{{$METADATA}} variable, but we can't do this—different templates may need
different styles that cause problems if they are within the one stylesheet.

Another reason is that if the stylesheet is in the template code, then the designer can
work on the design without needing to load it through the CMS.

www.eBookTM.Com

Design Templates – Part One

[120]

Setting up Smarty
Okay—we have a simple template. Let's display it on the front-end.

To do this, we irst edit /ww.incs/basics.php to have it igure out where the theme
is. Add this code to the end of the ile:

// { theme variables

if(isset($DBVARS['theme_dir']))

 define('THEME_DIR',$DBVARS['theme_dir']);

else define('THEME_DIR',SCRIPTBASE.'ww.skins');

if(isset($DBVARS['theme']) && $DBVARS['theme'])

 define('THEME',$DBVARS['theme']);

else{

 $dir=new DirectoryIterator(THEME_DIR);

 $DBVARS['theme']='.default';

 foreach($dir as $file){

 if($file->isDot())continue;

 $DBVARS['theme']=$file->getFileName();

 break;

 }

 define('THEME',$DBVARS['theme']);

}

// }

In this, we set two constants:

THEME_DIR This is the directory which holds the themes repository. Note
that we leave the option open for it to be located somewhere
other than /ww.skins if we want to move it.

THEME The name of the selected theme. This is the name of the
directory which holds the theme iles.

The $DBVARS array, from /.private/config.php, was originally intended to only
hold information on database access, but as I added to the CMS, I found this was the
simplest place to put information which we need to load in every page of the website.

Instead of creating a second array, for non-database stuff, it made sense to have one
single array of site-wide coniguration options. Logically, it should be renamed to
something like $SITE_OPTIONS, but it doesn't really matter. I only use it directly in
one or two places. Everywhere else, it's the resulting deined constants that are used.

After setting up THEME_DIR, defaulting to /ww.skins if we don't explicitly set it to
something else, we then set up THEME.

www.eBookTM.Com

Chapter 5

[121]

If no $DBVARS['theme'] variable has been explicitly set, then THEME is set to the
irst directory found in THEME_DIR. In our example case, that will be the /ww.skins/
basic directory.

Now we need to install Smarty.

To do this, go to http://www.smarty.net/download.php and download it. I am
using version 2.6.26.

Unzip it in your /ww.incs directory, so there is then a /ww.incs/Smarty-2.6.26
directory.

We do not need to use Smarty absolutely everywhere. For example, we don't use it in
the admin area, as there is no real need to do templating there.

For this reason, we don't put the Smarty setup code in /ww.incs/basics.php.

Open up /ww.incs/common.php, and add this to the end of it:

require_once SCRIPTBASE

 . 'ww.incs/Smarty-2.6.26/libs/Smarty.class.php';

function smarty_setup($cdir){

 $smarty = new Smarty;

 if(!file_exists(SCRIPTBASE.'ww.cache/'.$cdir)){

 if(!mkdir(SCRIPTBASE.'ww.cache/'.$cdir)){

 die(SCRIPTBASE.'ww.cache/'.$cdir.' not created.

 please make sure that '.USERBASE.'ww.cache is

 writable by the web-server');

 }

 }

 $smarty->compile_dir=SCRIPTBASE.'ww.cache/'.$cdir;

 $smarty->left_delimiter = '{{';

 $smarty->right_delimiter = '}}';

 $smarty->register_function('MENU', 'menu_show_fg');

 return $smarty;

}

As we'll see shortly, Smarty will not only be used in the theme's templates. It can
be used in other places as well. To reduce repetition, we create a smarty_setup()
function where common initializations are placed, and common functions are set up.

First, we make sure that the compile directory exists. If not, we create it (or die()
trying).

We change the delimiters next to {{ and }}.

www.eBookTM.Com

Design Templates – Part One

[122]

Also note the MENU function (you'll remember from the template code) is registered
here. If Smarty encounters a MENU call in a template, it will call the menu_show_fg()
function, which we'll deine later in this chapter.

We do not deine $METADATA or $PAGECONTENT here because they are explicitly tied
to the page template.

Remove the last line (the echo $PAGEDATA->body; line) from /index.php.

We discussed how pages can have different "types". The $PAGECONTENT variable may
need to be set up in different ways depending on the type, so we add a switch to the
index.php to generate it:

// { set up pagecontent

switch($PAGEDATA->type){

 case '0': // { normal page

 $pagecontent=$PAGEDATA->body;

 break;

 // }

 // other cases will be handled here later

}

// }

That gets the page body and sets $pagecontent with it (we'll add it to Smarty shortly).

Next, we need to deine the $METADATA variable. For that, we'll add the following
code to the same ile (/index.php):

// { set up metadata

 // { page title

 $title=($PAGEDATA->title!='')?

 $PAGEDATA->title:

 str_replace('www.','',$_SERVER['HTTP_HOST']).' > '

 .$PAGEDATA->name;

 $metadata='<title>'.htmlspecialchars($title).'</title>';

 // }

 // { show stylesheet and javascript links

 $metadata.='<script src="http://ajax.googleapis.com/ajax/

 libs/jquery/1.4.2/jquery.min.js"></script>'

 .'<script src="http://ajax.googleapis.com/ajax/libs/

 jqueryui/1.8.1/jquery-ui.min.js"></script>' ;

 // }

 // { meta tags

 $metadata.='<meta http-equiv="Content-Type"

 content="text/html; charset=UTF-8" />';

 if($PAGEDATA->keywords)

www.eBookTM.Com

Chapter 5

[123]

 $metadata.='<meta http-equiv="keywords" content="'

 .htmlspecialchars($PAGEDATA->keywords).'" />';

 if($PAGEDATA->description)$metadata.='<meta

 http-equiv="description"

 content="'.htmlspecialchars($PAGEDATA->description).'"

 />';

 // }

// }

If a page title was not provided, then the title is set up as the server's hostname plus
the page name.

We include the jQuery and jQuery-UI libraries on every page.

The Content-Type metadata is included because even if we send it as a header,
sometimes someone may save a web page to their hard drive. When a page is loaded
from a hard drive without using a server, there is no Content-Type header sent so
the ile itself needs to contain the hint.

Finally, we add keywords and descriptions if they are needed.

Note that we added jQuery-UI, but did not choose one of the jQuery-UI themes.
We'll talk about that later in this chapter, when building the page menu.

Next, we need to choose which template to show. Remember that we discussed
how site designs may have multiple templates, and each page needs to select one
or another.

We haven't yet added the admin part for choosing a template, so what we'll do is,
similar to the THEME setup, we will simply look in the theme directory and choose
the irst template we ind (in alphabetical order, so _default.html would naturally
be irst).

Edit index.php and add this code:

// { set up template

if(file_exists(THEME_DIR.'/'.THEME.'/h/'

 .$PAGEDATA->template.'.html')){

 $template=THEME_DIR.'/'.THEME.'/h/'

 .$PAGEDATA->template.'.html';

}

else if(file_exists(THEME_DIR.'/'.THEME.'/h/_default.html')){

 $template=THEME_DIR.'/'.THEME.'/h/_default.html';

}

else{

 $d=array();

www.eBookTM.Com

Design Templates – Part One

[124]

 $dir=new DirectoryIterator(THEME_DIR.'/'.THEME.'/h/');

 foreach($dir as $f){

 if($f->isDot())continue;

 $n=$f->getFilename();

 if(preg_match('/^inc\./',$n))continue;

 if(preg_match('/\.html$/',$n))

 $d[]=preg_replace('/\.html$/','',$n);

 }

 asort($d);

 $template=THEME_DIR.'/'.THEME.'/h/'.$d[0].'.html';

}

if($template=='')die('no template created.

 please create a template first');

// }

So, the order here is:

1. Use the database-deined template if it is deined and exists.
2. Use _default.html if it exists.

3. Use whatever is alphabetically irst in the directory.
4. die()!

The reason we check for _default.html explicitly is that it saves time. We have
set the convention so when creating a theme the designer should name the default
template _default.html, so it is a waste of resources to search and sort when it can
simply be set.

Note that we are ignoring any templates which begin with "inc.". Smarty can
include iles external to the template, so some people like to save the HTML for
common headers and footers in external iles, then include them in the template. If
we simply add another convention that all included iles must start with "inc." (for
example, inc.footer.html), then using this code, we will only ever select a full
template, and not accidentally use a partial ile.

For full instructions on what Smarty can do, you should refer to the online
documentation at http://www.smarty.net/.

Finally, we set up Smarty and tell it to render the template.

Add this to the end of the same ile:

$smarty=smarty_setup('pages');

$smarty->template_dir=THEME_DIR.'/'.THEME.'/h/';

// { some straight replaces

$smarty->assign('PAGECONTENT',$pagecontent);

www.eBookTM.Com

Chapter 5

[125]

$smarty->assign('PAGEDATA',$PAGEDATA);

$smarty->assign('METADATA',$metadata);

// }

// { display the document

header('Content-type: text/html; Charset=utf-8');

$smarty->display($template);

// }

This section irst sets up Smarty, telling it to use the /ww.cache/pages directory for
caching compiled versions of the template.

Then the $pagecontent and $metadata variables are assigned to it.

We also assign the $PAGEDATA object to it, which lets us expose the page object to
Smarty, in case the designer wants to use some aspect of it directly in the design. For
example, the page name can be displayed with {{$PAGEDATA->name|escape}}, or
the last edited date can be shown with {{$PAGEDATA->edate|date_format}}.

Before viewing this in a browser, edit the /ww.skins/basics/_default.html ile,
and change the double braces around the MENU call to single braces. We haven't yet
deined that function, so we don't want Smarty to fail when it encounters it.

When viewed in a browser, we now have this screenshot:

It is very similar to the one from Chapter 1, CMS Core Design, except that we now
have the page title set correctly.

www.eBookTM.Com

Design Templates – Part One

[126]

Viewing the source, we see that the template has correctly been wrapped around
the page content:

Okay—we can now see that the templating engine works for simple variable
substitution. Now let's add in functions, and get the menu working.

Before going onto the next section, edit the template again and ix the braces so
they're double again.

Front-end navigation menu
The easiest way to create a navigation menu is simply to list all the pages on the site.
However, that does not give a contextual feel for where everything is in relation to
everything else.

In the admin area, we created a hierarchical list. This is probably the easiest
menu which gives a good feel. And, using jQuery, we can provide that list in all
cases and transform it to whatever we want.

Let's start by creating the templating engine's MENU function with a tree, and
we'll expand on that afterwards.

We've already registered MENU to run the function show_menu_fg(), so let's create
that function.

We will add it to /ww.incs/common.php, where most page-speciic functions go:

function menu_show_fg($opts){

 $c='';

 $options=array(

www.eBookTM.Com

Chapter 5

[127]

 'direction' => 0, // 0: horizontal, 1: vertical

 'parent' => 0, // top-level

 'background'=> '', // sub-menu background colour

 'columns' => 1, // for wide drop-down sub-menus

 'opacity' => 0 // opacity of the sub-menu

);

 foreach($opts as $k=>$v){

 if(isset($options[$k]))$options[$k]=$v;

 }

 if(!is_numeric($options['parent'])){

 $r=Page::getInstanceByName($options['parent']);

 if($r)$options['parent']=$r->id;

 }

 if(is_numeric($options['direction'])){

 if($options['direction']=='0')

 $options['direction']='horizontal';

 else $options['direction']='vertical';

 }

 $menuid=$GLOBALS['fg_menus']++;

 $c.='<div class="menu-fg menu-fg-'.$options['direction']

 .'" id="menu-fg-'.$menuid.'">'

 .menu_build_fg($options['parent'],0,$options)

 .'</div>';

 return $c;

}

$fg_menus=0;

menu_show_fg() is called with an array of options as its only parameter. The irst
few lines of the function override any default values with values that were speciied
in the array (inspired by how jQuery plugins handle options).

Next, we set up some variables, such as getting details about the menu's parent page
if there is one, and convert the direction to use words instead of numbers if a number
was given.

Then, we generate an ID for the menu, to distinguish it from any others that might
be on the page. This is stored in a global variable. In a more structured system, this
might be stored in a static variable in a class (such as how Page instances are cached
in the /ww.php_classes/Page.php ile), but the emphasis here is on speed, and it's
quicker to access a variable directly than to ind a class and then read the variable.

Finally, we build a wrapper, ill it with the menu's tree, and return the wrapper.

The tree itself is built using a second function, menu_build_fg(), which we'll
add in a moment.

www.eBookTM.Com

Design Templates – Part One

[128]

Before doing that, we need to add a new method to the Page object. We will be
showing links to pages, and need to provide a function for creating the right address.
Edit /ww.php_classes/Page.php and add these methods to the Page class:

 function getRelativeURL(){

 if(isset($this->relativeURL))return $this->relativeURL;

 $this->relativeURL='';

 if($this->parent){

 $p=Page::getInstance($this->parent);

 if($p)$this->relativeURL.=$p->getRelativeURL();

 }

 $this->relativeURL.='/'.$this->getURLSafeName();

 return $this->relativeURL;

 }

 function getURLSafeName(){

 if(isset($this->getURLSafeName))

 return $this->getURLSafeName;

 $r=$this->urlname;

 $r=preg_replace('/[^a-zA-Z0-9,-]/','-',$r);

 $this->getURLSafeName=$r;

 return $r;

 }

The getRelativeUrl() method ensures that a page's link includes its parents and so
on. For example, if a page's name is page2 and it is contained under the parent page
page1, then the returned string is /page1/page2, which can be used in <a> elements
in the HTML.

The getURLSafeName() ensures that if the admin used any potentially harmful
characters such as !£$%^&*? in the page name, then they are converted to - in the
page name. When used in a MySQL query, the hyphen character - acts as a wildcard.
So for example, if there is a page name "who are tom & jerry?", then the returned
string is who-are-tom---jerry-. This method is commonly used in blog software
where its desired that the page name is used in the URL.

Combined, these methods allow the admin to provide "SEO-friendly" page addresses
without needing them to remember what characters are allowed or not. Of course, it
means that there may be clashes if someone creates one page called "test?" and another
called "test!", but those are rare and it is easy for the admin to spot the problem.

Back to the menu—let's add the menu_build_fg() function to /ww.incs/common.
php. This will be a large function, so I'll explain it a bit at a time:

www.eBookTM.Com

Chapter 5

[129]

function menu_build_fg($parentid,$depth,$options){

 $PARENTDATA=Page::getInstance($parentid);

 // { menu order

 $order='ord,name';

 if(isset($PARENTDATA->vars->order_of_sub_pages)){

 switch($PARENTDATA->vars->order_of_sub_pages){

 case 1: // { alphabetical

 $order='name';

 if($PARENTDATA->vars->order_of_sub_pages_dir)

 $order.=' desc';

 break;

 // }

 case 2: // { associated_date

 $order='associated_date';

 if($PARENTDATA->vars->order_of_sub_pages_dir)

 $order.=' desc';

 $order.=',name';

 break;

 // }

 default: // { by admin order

 $order='ord';

 if($PARENTDATA->vars->order_of_sub_pages_dir)

 $order.=' desc';

 $order.=',name';

 // }

 }

 }

 // }

 $rs=dbAll("select id,name,type from pages where parent='"

 .$parentid."' and !(special&2) order by $order");

 if($rs===false || !count($rs))return '';

This irst section gets the list of pages in this level of the menu from the database.

First, we get data about the parent page.

Next we igure out what sorting order the admin wanted that parent page's sub-
pages to be displayed in, and we build up an SQL statement based on that.

Note the and !(special&2) part of the SQL statement. As explained in the previous
chapter, we're using the special ield as a bitield. The & here is a Boolean AND
function and returns true if the 2 bit is set (the 2 bit corresponds to "Does not appear
in navigation"). So what this section means is "and not hidden".

If no pages are found, then an empty string is returned.

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Design Templates – Part One

[130]

Now add this part of the function to the ile:

 $items=array();

 foreach($rs as $r){

 $item='';

 $page=Page::getInstance($r['id']);

 $item.='getRelativeUrl().'">'

 .htmlspecialchars($page->name).'';

 $item.=menu_build_fg($r['id'],$depth+1,$options);

 $item.='';

 $items[]=$item;

 }

 $options['columns']=(int)$options['columns'];

 // return top-level menu

 if(!$depth)return ''.join('',$items).'';

What happens here is that we take the result set we got from the database
in the previous section, and we build a list of links out of them using the
getRelativeURL() method to generate safe URLs, and then display the admin-
deined name using htmlspecialchars().

Before each is closed, we then recursively check menu_build_fg() with the
current link as the new parent (the highlighted line). If there are no results, then
the returned string will be blank. Otherwise it will be a sub- which will be
inserted here.

If we are at the top level of the menu, then this generated list is immediately
returned, wrapped in ... tags.

The next section of code is triggered only if the call was to a sub-menu where $depth
is 1 or more, for example from the call in the highlighted line in the last code section:

 $s='';

 if($options['background'])$s.='background:'

 .$options['background'].';';

 if($options['opacity'])$s.='opacity:'

 .$options['opacity'].';';

 if($s){

 $s=' style="'.$s.'"';

 }

 // return 1-column sub-menu

 if($options['columns']<2)return '<ul'.$s.'>'

 .join('',$items).'';

This section checks to see if the options array had background or opacity rules for
sub-menus, and applies them.

www.eBookTM.Com

Chapter 5

[131]

This is useful in the case that you are switching themes in the admin area, and the
theme you switch to hasn't written CSS rules about sub-menus. It is very hard to
think of every case that can occur, so designers sometimes don't cover all cases. As
an example of this, imagine you have just created a new plugin for the CMS, and it
looks good in a new theme designed speciically for it. The admin however, might
prefer the general look of an older theme and selects it in the admin area (we'll get
to that in this chapter). Unfortunately, that older theme does not have CSS rules to
handle the new code.

In these cases, we need to provide workarounds so the code looks okay no matter
the theme. In a later chapter, we'll look at how the menu options can be adjusted
from the admin area, so that an admin can choose the sub-menu background color
and opacity to it any design they choose (in case the theme has not covered the case
already).

The inal line of the example returns the sub-menu wrapped in a element in
the case that only one column is needed (the most common sub-menu type, and the
default).

Now, let's add some code for multi-column sub-menus:

 // return multi-column submenu

 $items_count=count($items);

 $items_per_column=ceil($items_count/$options['columns']);

 $c='<table'.$s.'><tr><td>';

 for($i=1;$i<$items_count+1;++$i){

 $c.=$items[$i-1];

 if($i!=$items_count && !($i%$items_per_column))

 $c.='</td><td>';

 }

 $c.='</td></tr></table>';

 return $c;

}

In a number of places throughout the book, I've used HTML tables to
display various layouts. While modern designers prefer to avoid the
use of tables for layout, sometimes it is much easier to use a table for
multi-columned layouts, then to try to ind a working cross-browser
CSS alternative. Sometimes the working alternative is too complex to be
maintainable.

Another reason is that if we were to use a CSS alternative, we would be
pushing CMS-speciic CSS into the theme, which may conlict with the
theme's own CSS. This should be avoided whenever possible.

www.eBookTM.Com

Design Templates – Part One

[132]

In this case, we return the sub-menu broken into multiple columns. Most sites will
not need this, but in sites that have a huge number of entries in a sub-menu and the
sub-menu stretches longer than the height of the window, it's sometimes easier to
use multiple columns to it them all in the window than to get the administrator to
break the sub-menu down into further sub-categories.

We can now see this code in action. Load up your home page in the browser, and it
should look something like the next screenshot:

In my own database, I have two pages under /Home, but one of them is marked as
hidden.

So, this shows how to create the navigation tree.

In the next chapter, we will improve on this menu using jQuery, and will then write
a theme management system.

Summary
In this chapter, we advanced the CMS engine to the stage where you can now create
a designed template, including page menus, and embed the page content within that.

In the next chapter, we will improve the menu, write a theme management system,
and add the ability to embed Smarty templating code within page content.

www.eBookTM.Com

